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Chapter 1

Introduction

Estimating animal population densities is foundational to biology, ecology, and conservation within
New Zealand and worldwide. Assessments of population densities underpin our understanding of biodi-
versity patterns and are fundamental to the formulation of effective conservation strategies. Numerous
methods of density estimation have been employed by researchers since the 19th century, the earliest
being capture-recapture, sometimes known as mark-recapture.

1.1 Capture-Recapture

Capture-recapture for ecological applications was first used by Danish marine biologist C.G. Johannes
Petersen in 1896, to estimate plaise population sizes (Southwood & Henderson 2000). Traditionally, to
conduct capture-recapture, researchers visit a study area in which they set traps, capture live animals,
tag them so they may be uniquely identified, and then release them back into the study area. After
enough time has passed so that the tagged individuals are likely to have been redistributed among the
rest of the population, traps are set again, and a new sample of individuals is caught.

After these two trapping occasions, there are a number of different estimators available which may be
used to estimate population size. One such method of note is the Lincoln-Petersen estimator. The
estimator is as follows:

N̂ = nK

k
(1.1)

where N̂ is the estimated number of animals in the population, n is the number of animals captured
and tagged on the first occasion, K is the number of animals captured and tagged on the second
occasion, and k is the number of animals captured on the second occasion that were also caught and
tagged on the first occasion.

In its simplicity, this traditional form of capture-recapture is not without limitations. One of its key
assumptions—that the probability of capture is uniform across all individuals within a study—is often
not true. Various factors such as sex, natural variability, and learned attitudes towards the traps
after trapping occasions can make some animals more or less likely to be caught than others. While
probability of capture may occasionally be constant in some contexts, broadly assuming that detection
probabilities are always constant without just cause can result in negatively biased estimators of N
(Otis et al. 1978).
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Moreover, it is common sense that the closer a trap is to an animal’s home, the greater chance it
has of being captured. This method also relies on populations being closed, and does not address the
prospect that animals may enter or leave the population via birth, death, immigration, or emigration,
during the study period. Most importantly, this method does not account for spatial effects.

1.1.1 The need to account for spatial factors

While capture-recapture can be used to derive an estimate of the total number of animals, N , for
population estimates to be usefully applied to ecological or conservation efforts, population density is
often a more helpful measure to have. However, to calculate density, D, a well-defined study area, A,
is necessary in addition to N . In order to define the boundaries of A, animal movement within space
must be considered. Therefore, density cannot be accurately estimated without accounting for space.

1.2 Spatial Capture-Recapture

A remedy to the issues arising from capture-recapture for density estimation is to use spatial capture-
recapture (SCR) instead (Efford 2004, Borchers & Efford 2008, Royle & Young 2008). The SCR
process involves detecting and then re-detecting animals in a well-defined region in both space and
time. These detections don’t necessarily have to be conducted with physical traps and tagging; other
techniques such as camera traps (Green et al. 2020) (when individuals can be uniquely identified from
patterns or markings), hair snares (Proctor et al. 2010), or even fecal DNA samples (Owen-Ramos et
al. 2022) can be used as detection methods.

When working with SCR, each animal inhabiting A is assumed to have a subregion within A where
the individual spends most of its time engaging in its usual activities such as foraging, sleeping, or
mating. The central point within this region is referred to as its activity centre or home-range centre.
Each individual i is associated with a pair of spatial coordinates si = (si,x, si,y) which represent the
location of its activity centre. By default, the distribution of activity centres is assumed to be from
a homogeneous Poisson process, which is not always valid in reality. As one might expect, animals
often cluster inhomogeneously in areas where the habitat is more suitable, which could depend on
factors such as forest coverage, terrain, or resource availability. Figure 1.1 demonstrates the difference
between such distributions of activity centres. Fortunately, spatial covariates can be incorporated into
SCR models in order to use an inhomogeneous Poisson point process to describe the distribution of
activity centres (Borchers & Efford 2008).

1.2.1 The detection function

Instead of assuming uniform detection probability, SCR allows a relationship between detection prob-
ability and the distance between an individual and the detector.

For K detectors, the locations of the detectors are denoted by x = (x1, ..., xK), where xk is the
location of the kth detector. Let pij be the probability of individual i being detected at trap j. This
can be modelled using a detection function g(dij) where dij is the distance between the activity centre
of individual i and the location of detector j.

The most common detection function used to model pij is the half-normal function:

pij = g(dij) = g0 × exp
(

−d2
ij

2σ2

)
(1.2)
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Homogeneous distribution Inhomogeneous distribution

Figure 1.1: Comparison of homogeneously and inhomogeneously distributed activity centres. Here,
the inhomogeneous distribution only depends on the x-coordinate of the area and is generated by the
equation log(y) = 5x + 1. In reality, the distribution may depend on a number of spatial or session
covariates. For example, we may have a distribution given by the equation log(y) = β0+β1×year+β2×
forest, where ’year’ and ’forest’ are session and spatial covariates, and β0, β1, and β2 are coefficients.
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where,

• g0 is the baseline detection probability when the distance between the detector and the animal’s
activity centre is 0

• σ is the parameter denoting the decline in detection probability as the distance between the
detector and the animal’s activity centre increases.

Figure 1.2 illustrates the shape of a half-normal detection function when g0 = 1; Figures 1.3 and 1.4
demonstrate how changing g0 and σ, respectively, changes this general shape of the detection function.

These parameters may be constant values or may depend on spatial covariates, such as proximity to a
particular geographical feature, or session covariates, such as weather conditions or time. For example,
hibernating animals such as bears may be less active during winter months and therefore less likely to
be detected during a session that takes place during winter.
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Figure 1.2: The half-normal detection function.

Other detection functions include hazard rate, exponential, or compound half-normal (Efford et al.
2023).

When collecting SCR data, capture histories are typically stored as binary matrices, where the rows
represent unique individuals that have been captured, and the columns usually represent trapping
occasions. A complete capture history for individual i is of the form ωi = (ωi1, ..., ωiK), where ωij = 1
when individual i is detected on the jth occasion, and ωij = 0 otherwise. It follows that the sum of the
elements in ωi returns the number of occasions on which individual i was detected, and the sum of the
jth elements over capture histories of all individuals returns the number of unique individuals detected
on occasion j. When in matrix form, this corresponds to row sums and column sums respectively.
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Figure 1.3: The half-normal detection function changes with different values of g0

1.2.2 Likelihood function for parameter estimation

A common approach to parameter estimation for SCR is maximum likelihood (Borchers & Efford
2008). When n is the number of animals detected, and θ is the vector of parameters (D, g0, σ), we
derive the likelihood function by using the joint distribution of n and the capture histories of the n
detected individuals:

L(θ) = f(n, ω1, ..., ωn)
= f(n)f(ω1, ..., ωn|n)

= f(n)
n∏

i=1
f(ωi)

The marginal distribution f(ωi) is derived through the integration of the joint distribution of ωi and
si with respect to si:

f(ωi) =
∫

R2
f(ωi, si)dsi

=
∫

R2
f(ωi|si)f(si)dsi

(1.3)

By the nature of the SCR methodology, we have information about where and when individual animals
were captured or detected, but we do not have direct information about them when they have not
been captured, nor do we have information about the individuals that are never detected. This means
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Figure 1.4: The half-normal detection function changes with different values of σ.

that the true activity centres, si, are latent variables. For proper estimation of g0 and σ, the locations
of the activity centres must be inferred, and it is necessary to integrate over all possible locations
where there could feasibly be an activity centre. This generally begs the need for a spatial boundary
around the study area, defining the range of plausible locations for activity centres. In practice, we
approximate these integrals by dividing the area contained within this boundary into a grid of cells,
where each cell represents a potential location of an activity centre. This grid is known as a mask.

Finally, maximum likelihood estimation can be used to estimate g0 and σ, along with parameters of
the point process used to model the activity centre locations.

1.3 Limitations of SCR

While the visual or physical observations used in SCR can work well with some animals, they can
be difficult to use effectively with other animals, particularly species that are very large, very small,
or good at camouflaging. For example, the Cape Peninsula Moss Frog Arthroleptella lightfooti is a
tiny frog that inhabits the Western Cape Province in South Africa and is extremely difficult to find
(Measey et al. 2017). Monitoring animals of this size by direct observation can be time-consuming,
expensive, and inaccurate. In cases like this, a more appropriate approach may be to detect animals’
vocalisations to estimate population density. Models using this acoustic approach are known as acoustic
spatial capture-recapture models (ASCR).
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1.4 Acoustic Spatial Capture-Recapture

Acoustic spatial capture-recapture removes the need for researchers to visually observe or physically
trap animals; animal vocalisations are recorded instead. The first acoustic capture-recapture methods
were developed by Efford, Dawson, and Borchers (2009).

The following are some scenarios when acoustic surveys may be a more appropriate or preferable
approach for estimating density:

1. Animals are good at camouflaging, e.g. the northern spotted owl (Appel et al. 2023).
2. It is not practical to physically trap animals due to their size, e.g. the aforementioned Cape

Peninsula Moss Frog (Measey et al. 2017), or Cuvier’s beaked whales (Barlow et al. 2021).
3. It is not practical to physically trap animals due to their habitat, e.g. gibbons that live in tall

trees where it is difficult to trap or detect them (Kidney et al. 2016).
4. Visual or physical detections are possible, but more limited than if acoustic data were used,

e.g. gibbons living in dense canopies where foliage can obscure them (Kidney et al. 2016).

As a consequence of the above scenarios, acoustic detections can sometimes be cheaper and/or easier
than physical or visual methods.

A further benefit of acoustic data is that it can potentially be collected passively over a long period
of time, which makes it possible to collect a very large amount of data cheaply and without too much
effort. This is generally not possible to do when setting physical traps, as not only is it inhumane to
keep animals in traps over long periods of time, it inherently does not work in a capture-recapture
framework. Even for other kinds of detectors, such as hair snares (Proctor et al. 2010), physical
evidence still must be collected, which does not allow for passive data collection.

After placing microphones or audio detectors in a study area, sound recording can be done continuously
over time, and then software or machine learning techniques can be used to distinguish animal calls
over background noise with good accuracy.

One such example of this is in Using passive acoustic monitoring to estimate northern spotted owl
landscape use and pair occupancy (Appel et al. 2023), where six weeks of recordings were able to be
made, and convolutional neural networks were used to identify spotted owl calls, proceeded by logistic
regression which was able to distinguish male from female calls.

To be considered ‘passive’, an acoustic survey does not necessarily need to take place over a long time
period—in fact it can occur over a very short time period, especially if animals call very frequently—but
when long term data is needed then this can be beneficial.

Alternatively, active acoustic detection involves researchers emitting sounds in order to elicit animal
responses. This approach has often been used to estimate fish population densities (Zwolinski et al.
2009). However, manufacturing animal calls within their habitat may have unknown consequences
both within the population of interest and with other species occupying the same habitat. Emitting
fake animal calls could, for example, attract more predators to the area which can disturb the natural
balance of its ecosystem. Therefore, passive surveys are generally preferable.

Since individuals may vocalise or ‘call’ more than once, the detection function for acoustic methods
estimates the probability of detecting a single vocalisation rather than an individual animal. Therefore,
the estimate here is call density, Dµ, where µ is the average call rate of the animal, rather than
population density. The latent location, in this case, is now a physical location of a call rather than
the activity centre of an animal. This also means that it cannot be assumed that vocalisations come
from a Poisson process; once an animal has vocalised in one place within A, if it vocalises again it
is likely to be either in the same place or within very close proximity to its original place, therefore
vocalisation locations are not independent.
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Fortunately, using a Poisson process still results in an unbiased estimate of call density, where Dc = Dµ
(Stevenson et al. 2015). Call rate data can be collected separately from the density study to estimate
µ. It then follows that D̂ = D̂c

µ̂ .
Unlike physical traps, where a trap may only capture one animal per occasion, acoustic detectors
are known as ‘proximity’ detectors (Marques et al. 2013) so individuals can be detected by multiple
detectors on a single occasion. Additionally, acoustic data encompass more than simply whether or not
an animal was heard by a particular acoustic detector. Upon an acoustic detection, researchers may be
able to ascertain the signal strength of a call, an estimated bearing or distance of the caller from the
microphone, and/or the received arrival time of the signal. It must be noted that measurement error
parameters must be estimated for these auxiliary data types; for example, estimated bearings may not
point exactly to the location of an individual responsible for a call. On account of measurement error,
when multiple detectors identify the same call, the bearings estimated by each detector often do not
converge to a single point, as demonstrated in Figure 1.5.
Since acoustic data are not restricted to a binary outcome (‘detected’ or ‘not detected’), and multiple
calls can be made by each animal, it makes more sense to represent detections in a long form table, as
opposed to a binary matrix. ASCR data typically have columns for the session ID, animal ID, occasion,
and trap ID. It may also include columns for observed bearings of the animals from the detectors or
for received signal strength of the detections, depending on how much information researchers were
interested in and able to acquire. Table 1.1 demonstrates what this data may look like in table form,
and Figure 1.5 illustrates what Table 1.1 may look like when plotted over a study area.

Table 1.1: Example acoustic capture data

session ID occasion trap bearing
1 1 1 1 3.07
1 1 1 5 4.60
1 1 1 7 0.28
1 2 1 3 3.77
1 2 1 5 0.64
1 3 1 9 2.60
2 1 1 1 2.41
2 1 1 5 5.23
2 3 1 6 3.50
2 3 1 8 0.70
2 3 1 9 5.80
2 4 1 1 0.14
2 4 1 2 5.90

As with regular SCR, a detection function such as the half-normal detection function, with the same
parameters g0 and σ, may be used to model detection probability.

1.5 Software for Creating SCR and ASCR Models

There currently exist four notable R packages for the analyses described above: openCR (Efford 2022),
secr (Efford et al. 2023), ascr (Stevenson 2022), and the currently in-development package acre
(Stevenson 2023).
openCR and secr serve very similar purposes; indeed they were both authored by Murray Efford.
openCR can generally be thought of as a more limited version of secr. Some examples of features of
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Figure 1.5: Sample acoustic detections and their observed bearings from the detectors.

secr that openCR lacks include overdispersion adjustment and bootstrap confidence intervals (Efford
2022).
Taken directly from the its vignette, the secr package can be described is as follows: “Functions to
estimate the density and size of a spatially distributed animal population sampled with an array of
passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-
dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation
and model selection.” (Efford et al. 2023).
In addition to the R package itself, secr also has its own R Shiny web interface, where users can upload
their capture history and trap data and have models of their choosing created for them. This addition
allows users who are less confident programmers to use the package, while users who are comfortable
with programming may still take advantage of the greater control and optimisation options that come
with using the package directly with R. This flexibility is what sets the use of R packages apart from
other types of capture-recapture software.
While secr provides functions necessary for regular spatial capture-recapture, it does not allow users to
work with acoustic data. Here lies the specific value in the ascr package, authored by Ben Stevenson;
users may input long form acoustic detection history data for analyses that require it, while still
providing the option to perform regular SCR when required. Like secr, ascr also has an R Shiny
web interface. The in-development package, acre, is a rewrite of ascr by the same author, with the
addition of some important new features; these include:

• Model covariates are not restricted to the use of spatial covariates only; acre introduces the
ability to include session-level and trap-level covariates.

• Information about spatial covariates does not need to be known for all mask cells; the user can
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input spatial covariates at whichever locations they have been measured, which do not necessarily
have to be within mask locations.

• All model parameters have the ability to vary with covariates—such as detection function param-
eters and auxiliary data measurement error parameters—as opposed to restricting this variation
to density only.

These new additions allow different detectors or sessions to have different detection functions to one
another.

When rewriting a package, assuming that the output of the original package is a ‘source of truth’, it is
essential that the output of the new package match that of the original package when performing the
same computations, regardless of how efficiently or effectively it may do so. Therefore, it is crucial that
the outputs of the functions available in acre be validated against the outputs of the corresponding
functions available in ascr.

Although it is possible to use existing data to compare the outputs of acre to the outputs of ascr,
these data likely do not cover all scenarios researchers may encounter when it comes to study design
and spatial and session covariates, especially when considering how the field is continuously evolving.
Testing the package against a broad range of data that encompass a variety of study scenarios is
important to ensure not only that the output is correct, but to identify potential edge cases where
perhaps the usage of the package is unclear or not feasible. Using simulated data provides a practical
and efficient way to test acre with many datasets in many different contexts, and appears the natural
approach to test and validate acre’s output.

1.6 Dissertation Overview

There are multiple goals for this dissertation:

• Create a reusable simulation process to create realistic example acoustic capture-recapture data.
This process must be able to change based on different parameter values and spatial and session
covariates.

• Use the simulation to create a variety of example acoustic capture-recapture datasets, and then
use these data with the functions available in acre and ascr.

• Identify issues that come about when using the simulated data with acre functions.

• Compare the output when using acre functions to the output when using ascr functions on the
same data and flag any discrepancies.

14



Chapter 2

Simulating Acoustic Data with
Realistic Spatial Effects

The simulation was written using the R programming language. Functions were written in individual
scripts for readibility and cleanliness. All code can be found at the following GitHub repository:
https://github.com/melbather/simulating-acr-data. The simulation was loosely based on acoustic
surveys of gibbons (Kidney et al. 2016, McGrath et al. (in press)). To understand the simulation
and its constituent functions, one must first understand the considerations made to accommodate the
many covariates that can change between ASCR studies.

2.1 Considerations

When simulating acoustic capture-recapture data, there is no shortage of factors to consider. Spatial
and session covariates can affect detection probabilities as well as animal densities at different points
within the study area. Sessions can differ between one another in both or one of time and space.

2.1.1 Distance to the nearest village

The first consideration made within the simulation is spatial in nature: the distance of each mask cell
to the centre of its nearest ‘village’. In this context, a ‘village’ is synonymous with any geographical
feature where there would typically be fewer animals living or dwelling, and for the purpose of this
simulation any feature of such a nature will be referred to as a ‘village’. By using ‘distance to the
nearest village’ as a spatial covariate, density is allowed to vary with proximity to such features.

In regards to this covariate, acre holds a key advantage over ascr: village locations can be input into
acre functions directly and distances are calculated on behalf of the user. In contrast, ascr requires
the user to manually calculate the distance to the nearest village for every mask cell, a task which can
be computationally expensive, especially if the number of mask cells used is large.

2.1.2 Other spatial covariates

Next, other spatial features within the study area that can affect densities are considered. For the
purpose of this simulation, the chosen features included are:
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• Areas of forest coverage
• Protected areas
• Altitude

‘Forest coverage’ and ‘protected area’ are the chosen terms for geographical features where animals
are more likely to live, but in reality this could be any habitat feature that is desirable for the species
of interest. Each mask cell is considered to be ‘forest’ or not, and ‘protected area’ or not. ‘Altitude’
is simply the altitude across the study area in metres, which must be accounted for as it can affect
suitability of habitat for some species. Each mask cell is assigned a value for its altitude.

2.1.3 Spatial correlation in covariate simulation

Mask cells are not independent of one another, therefore it is not realistic to randomly assign spatial
covariates to mask cells. For example, if a particular cell is considered to be ‘forest’, then it is likely
that its adjacent cells are also ‘forest’. Consequently, to produce realistic data that consider spatial
covariates appropriately, spatial correlation is needed to simulate the variables above.

The method used to achieve this spatial correlation is random number generation from the multivariate
normal distribution, with mean 1. The R package mvtnorm is used for this generation (Genz & Bretz
2009). The covariance matrix used in this distribution, Σ, is derived using the following equation:

Σ = exp(−A/α) (2.1)

where A is the Euclidean distance matrix of all the mask cells, and α is either αforest, αprotected, or
αaltitude, depending on the relevant covariate. These α values ultimately determine the extent of the
spread of their corresponding covariates, and how ‘smooth’ the edges of these covariate regions will
end up being. The greater the value of α, the ‘smoother’ the covariate region will be.

In the cases of the binary covariates ‘forest’ and ‘protected area’, after the random number generation
produces a number for each mask cell, the cell is assigned the value ‘1’ if the generated number is
greater than 0, and ‘0’ otherwise. Here, a ‘1’ indicates that the cell is ‘forest’ or ‘protected’ depending
on the covariate of interest, and ‘0’ indicates that it is not these things.

Figures 2.1 and 2.2 demonstrate simulated forest cover and protected area cover, respectively, across the
study region in the first session of a particular multi-session simulation. These figures were generated
using acre.

In the case of the numeric covariate ‘altitude’, terrain must be considered, because, as one might
expect, mountainous regions tend to have greater altitudes than non-mountainous regions. Therefore,
if a session takes place on a mountainous terrain, its range of possible altitude values is restricted to be
between 2000m and 4500m. Conversely, if a session takes place in a non-mountainous region, its range
of possible altitude values is restricted to be between 0m and 2000m (below sea level altitudes are not
currently considered here, and this may leave room for a potential expansion of the simulation in the
future). Once the random number has been generated, it is subsequently multiplied by a quarter of
the difference in the maximum and minimum altitude values and added to the mean of the range of
possible altitudes in order to assign each mask cell an altitude. This results in a smoothly changing
alititude.

Figure 2.3 demonstrates simulated altitude values from the same simulation noted above, and acre
was again used to create this plot.
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Figure 2.1: Simulated forest coverage created using spatial correlation.

Figure 2.2: Simulated protected area coverage created using spatial correlation.
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Figure 2.3: Simulated protected altitude values created using spatial correlation.

2.1.4 Session covariates

Sessions that reoccur in the same study area at different points in time do not necessarily share the
same spatial covariates. For example, an area that was covered in forest in an initial session may be
subject to deforestation, and therefore in subsequent sessions forest is no longer present to the degree
it was in the first session. Sessions also do not need to occur in the same study area, therefore it is
possible for spatial covariates to be entirely different between sessions. For this simulation, in addition
to the spatial covariates described above, covariates that were subject to change between sessions are
described below.

Location of the study area

The location of the study area usually dictates spatial covariates, and therefore affects population
densities and detection probabilities. While sessions may occur in the same study area each time, it is
possible for them to take place in completely independent areas.

Time

Time certainly has the potential to increase or decrease population densities, depending on the direction
of the trend, if any, in population growth. For example, if a particular species is subject to hunting or
poaching, densities may decrease with time.
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Weather conditions

Weather conditions can negatively or positively impact detection probabilities, based on detection
methods. For example, loud heavy rain could make audio detections more difficult. In this simulation,
the weather conditions generated for each session are either ‘snow’, ‘rain’, ‘overcast’, or ‘run’, and, for
simplicity, these conditions affect g0 linearly, in the order given.

Terrain

The accuracy of observed bearings of acoustic detections is likely to change based on the terrain of
the session in which it occurs. For example, mountainous areas can create echoes which distort animal
calls, significantly reducing the accuracy of the detections. Therefore, when simulating measurement
error, terrain should be accounted for.

Measurement error for observed bearings is simulated using the CircStats package (Agostinelli 2018)
to generate random numbers from the von Mises distribution with mean of the true bearings and a
value for κ chosen by the user. κ, also known as the concentration parameter, determines how close
the observed bearings typically are to the true bearings. It is this parameter, then, that should vary
with types of terrain.

Hence, the concentration parameter is adjusted within the simulation using the equation:

log(κ) = β0cp + β1cp × mountain (2.2)

where mountain takes the value 1 when the session is mountainous and 0 otherwise, β0cp is a user-
chosen intercept, and β1cp determines the extent to which the user wishes mountainous regions to
impact observed bearing accuracy.

Terrain is also thought to affect g0; for example, if a session occurs in a mountainous region, the ability
of acoustic detectors to pick up sounds can be blocked or limited.

2.1.5 Density calculations based on covariates

To calculate the density of animals within each mask cell in the study area, the simulation uses the
following equation:

D = exp(β0+β1×x+β2×y+β3×forest+β4×village+β7×protected+β8×altitude+β9×time) (2.3)

where:

• x is the x coordinate of the mask cell

• y is the y cordinate of the mask cell

• forest is the binary variable 1 if the mask cell is ‘forest’ and 0 otherwise

• village is the distance of the mask cell to the centre of its nearest village (if no villages exist,
then this term is omitted)

• protected is the binary variable 1 if the mask cell is ‘protected area’ and 0 otherwise
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• altitude is the altitude of the mask cell in metres

• time is the time (year) the session occurs

• β0 is an intercept term

• β1 is the coefficient determining how density varies horizontally across the study area

• β2 is the coefficient determining how density varies vertically across the study area

• β3 is the coefficient that determines the extent to which forest impacts density

• β4 is the coefficient that determines how density changes with respect to distance to the nearest
village

• β7 is the coefficient that determines the extent to which protected area impacts density

• β8 is the coefficient that determines how density changes with respect to altitude

• β9 is the coefficient that determines how density changes over time

2.1.6 Adjusting g0 with covariates

There are three terms involved in the adjustment of g0:

• g0base is the baseline value of g0, not accounting for any impact of conditions

• mountain takes the user-chosen value β6 if the terrain of the session is mountainous, and 0
otherwise

• weather takes the user-chosen value β5 multiplied by 1, 2, 3, or 4, depending on whether the
conditions are ‘snow’, ‘rain’, ‘overcast’, or ‘sun’ respectively.

While g0base is chosen by the user, g0 is adjusted within the simulation using the logistic distribution
function with mean logit(g0base) + mountain + weather. It is this value that is subsequently used in
the detection function.

2.2 The Functions

With the above considerations in mind, the functions used within the simulation can be divided into
three categories, depending on how they serve the overall purpose:

1. Covariate creation

• create_villages()
• generate_session_information()
• generate_session_locations()

2. Helper functions

• create_mask()
• find_bearings()
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• format_capture_histories()

3. The actual simulation

• simulate_capture_histories_with_sessions()

These functions will be described in the order in which they are listed.

2.2.1 create_villages()

create_villages() is responsible for creating the locations of a desired number of hypothetical ‘vil-
lages’, as described in Section 2.1.1. The user of this function must input a chosen number of villages,
as well as the range of x and y coordinates where these villages can occur. The function returns a data
frame containing the x and y coordinates of the invented villages.

For example, the following function call can be used to create four villages that are located between
-2000 and 2000 on the x-axis, and -500 and 1900 on the y-axis.

create_villages(number = 4, x_range = c(-2000, 2000),
y_range = c(-500, 1900))

This can be expected to produce a data frame such as the following:

## x y
## 1 -1706.3424 -10.91383
## 2 -1453.9908 378.35233
## 3 738.4348 1530.86982
## 4 -1601.5123 68.49423

2.2.2 generate_session_information()

This function creates a range of conditions for a given number of sessions over a specified period of
time. The user inputs a set number of sessions over which the hypothetical study is to be conducted,
two vectors which contain specific conditions that are possible within the study, the range of years
over which the sessions can occur, and the horizontal and vertical dimensions that the survey areas
should take.

The vectors containing session conditions are intended primarily to store potential weather conditions
and terrain possibilities, but could be used for any other similar covariates that the user wishes to
generate. These must be character vectors that contain all possible states that the particular covariate
can take. For example, a vector storing weather conditions could be c("sun", "rain", "overcast",
"snow"). It should be noted that although this function can handle any kind of covariates, the
simulation as a whole can currently only function with terrain and weather covariates.

generate_session_information() includes an optional argument space_overlap, which is set to
FALSE by default. When set to TRUE, sessions are allowed to overlap in space, otherwise survey areas are
created for sessions so that no two sessions may occur over any overlapping areas. In accordance with
this is an additional optional argument, min_space—set to 50 by default—which sets the minimum
horizontal and vertical distance between survey areas across sessions. The intention for this is to
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achieve as much independence in space between sessions as possible, if that is desired for the simulated
data. When space_overlap is set to TRUE, min_space is simply ignored.

The result of running generate_session_information() is a data frame with a column for the
number of the session, columns for the weather and terrain (or other covariates) present at the session,
the time (year) that the session occurred, and the range of x and y coordinates of the survey area,
generated randomly within the function.

For a study with five sessions over varying weather conditions, where the terrain can either be
mountainous or non-mountainous, the dimensions of the survey areas have to be 1000m hori-
zontally and vertically, and sessions must occur at least 40m apart from one another in space,
generate_session_information() can be used as below:

num_sessions <- 5
generate_session_information(num_of_sessions = num_sessions,

conditions1 = c("rain", "sun", "snow", "overcast"),
conditions2 = c("mountain", "non-mountain"),
time_range = 2012:2018, x_dimension = 1000,
y_dimension = 1000, min_space = 40)

and will produce a data frame as below:

## session weather terrain time x_start x_end y_start y_end
## 1 1 snow non-mountain 2013 513 1513 1239 2239
## 2 2 rain non-mountain 2018 3169 4169 6092 7092
## 3 3 sun mountain 2015 8046 9046 8297 9297
## 4 4 snow non-mountain 2016 11636 12636 10605 11605
## 5 5 rain non-mountain 2012 13091 14091 14420 15420

2.2.3 generate_session_locations()

The locations of the sessions are generated in a separate function which is called within
generate_session_information() for the sake of maintaining clean and readable mod-
ular code. The spatial dimensions and min_space arguments which are first passed to
generate_session_information() are then passed to generate_session_locations(), along
with the number of sessions.

If overlap of sessions in space is not allowed, then a range of potential x and y coordinates is calcu-
lated with consideration of the above arguments. This space is then partitioned into non-overlapping
subregions, where each session is assigned a particular subregion. Within each session’s subregion, a
section the size of the predetermined spatial dimensions is randomly chosen, and the coordinates of this
section are returned as the spatial coordinates of the study area for that session. If overlap of sessions
in space is allowed, then a range of potential x and y coordinates is calculated without consideration
of the above arguments. Sections the size of the predetermined spatial dimensions are then randomly
chosen throughout this region, without the need for initial partitioning.

Given that generate_session_locations() is used only inside generate_session_information(),
see the example given for generate_session_information() above for an example of how
generate_session_locations() is used.
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2.2.4 create_mask()

This is an optional function that provides an easy way to create an ellipse-shaped grid of points which
act as mask cells within the simulation. Other methods of producing a mask are allowed and welcomed
as substitutes for this function.
create_mask() takes the desired widths of the x and y axes of the ellipse shape, as well as the number
of rows and columns of the grid of points, allowing the user flexibility in setting the granularity of the
mask.
The function can be used, and the resulting grid plotted, as below:

mask <- create_mask(x_width = 700, y_width = 600, num_rows = 50, num_cols = 50)
plot(mask, cex = 0.8, asp = 1)
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2.2.5 find_bearings()

The find_bearings() function is a simple helper function used inside
simulate_capture_histories_with_sessions(). It finds the true bearing, in radians, from
one set of coordinates in the study area to another. Some random variation proceeds the use of this
function to account for measurement error in a ‘real world’ scenario.
The function’s inputs are two vectors that contain the x and y coordinates of the points of interest,
and its output is a single numerical value, which is the bearing. For simplicity, regular 2-dimensional
geometry is used to calculate the bearings, rather than a true latitude-longitude approach.
As this is a trivial helper function, an example is not given.
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2.2.6 format_capture_histories()

The second helper function used within simulate_capture_histories_with_sessions() is needed
to transform a binary capture history matrix into a long form capture history data frame. This function
operates on a single session at a time, so a session ID must be given as an argument in addition to the
binary capture history matrix.
The resulting data frame has four columns: session (the session ID), ID (the animal ID), occasion, and
trap. This structure is required by the ascr and acre packages.
The function may be used as below:

set.seed(42)
#Create example binary matrix
m <- matrix(0, 5, 5)
(example_binary_capthist <- cbind(apply(m, c(1,2),

function(x) rbinom(1, 1, 0.5)), 1:nrow(m)))

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 0 1 1 1
## [2,] 1 1 1 1 0 2
## [3,] 0 0 1 0 1 3
## [4,] 1 1 0 0 1 4
## [5,] 1 1 0 1 0 5

#Change to long form capture history
knitr::kable(do.call(rbind,

apply(example_binary_capthist, 1, format_capture_histories, 1)))

session ID occasion trap
1 1 1 1
1 1 1 2
1 1 1 4
1 1 1 5
1 2 1 1
1 2 1 2
1 2 1 3
1 2 1 4
1 3 1 3
1 3 1 5
1 4 1 1
1 4 1 2
1 4 1 5
1 5 1 1
1 5 1 2
1 5 1 4

2.2.7 simulate_capture_histories_with_sessions()

The final function is where the simulation truly takes place. It operates on a single session at a time,
so a for loop or similar method can be used with the function when multiple sessions are desired. The
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output created is a named list containing the following components:

• binary_capture_history is a data frame containing the simulated binary capture history for
the session.

• long_form_capture_history is a data frame containing the same information as
binary_capture_history but in a long data format.

• animal_locations is a data frame containing the x and y coordinates of all the animals in the
survey region, regardless of whether or not they were detected.

• detected_animal_coords is a data frame which contains the x and y coordinates of only the
animals in the survey region that were detected.

• forest and protected_areas are binary character vectors containing values ‘1’ and ‘0’. Each
element in the vectors represents a mask cell. A ‘1’ indicates that the mask cell is considered to
be ‘forest’ or ‘protected area’ respectively, and a ‘0’ indicates otherwise.

• altitude is a numeric vector, where, like forest and protected_areas, each element represents
a mask cell. It contains the altitudes, in metres, for each mask cell.

• traps is a data frame containing the x and y coordinates of the traps in the survey region. It is
necessary to return this, as the simulation adjusts the relative positions of the detectors based
on where the particular session occurs in space.

• mask is a data frame containing the x and y coordinates of the centres of the mask cells in the
survey region. This must be returned for the same reason as traps.

Although the output of simulate_capture_histories_with_sessions() is somewhat compendious,
it is necessary for creating models with ascr and acre, validating their accuracy, and creating visual-
isations of the simulations.

simulate_capture_histories_with_sessions() accepts the following arguments:

• session_info: data frame, required

– This is the data frame containing the session covariates that is created in
generate_session_information().

• alpha_forest, alpha_protected, alpha_altitude: numeric, required

– The values of αforest, αprotected, and αaltitude discussed in Section 2.1.3.

• beta0: numeric, required:

– The value of β0 in Equation 2.3

• beta1, beta2, beta3, beta4: numeric, optional (default = 0):

– The values of β1−4 in Equation 2.3.

• beta5, beta6: numeric, optional (default = 0):

– The values of β5 and β6 discussed in Section 2.1.6.

• beta7, beta8, beta9: numeric, optional (default = 0):

– The values of β7−9 in Equation 2.3.

• mask_locations: numeric matrix, required:
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– A matrix containing the x and y coordinates of the centres of all the mask cells. This is to
be the same for all sessions, regardless of whether the sessions overlap in space or not. The
coordinates are adjusted relative to the study area within the simulation.

• detector_locations: numeric matrix, required:

– A matrix containing the x and y coordinates of the the detectors. As with mask_locations,
these are adjusted relative to the coordinates of the study area, so they may be the same
across all sessions even if the sessions do not overlap in space.

• g0_base: numeric, required:

– The baseline value for g0 without interference from session covariates such as weather or
terrain.

• sigma: numeric, required:

– The value of σ used in the detection function.

• x_range, y_range: numeric vector, required:

– The maximum and minimum x and y coordinates over which the survey area spans.

• village_locations: data frame, optional (default = NULL):

– A data frame created in create_villages() that stores the x and y locations of the centres
of all the villages in the study area, if there are any.

• cp_beta0: numeric, required:

– The value of β0cp in Equaion 2.2.

• cp_beta1: numeric, optional (default = 0):

– The value of β1cp in Equation 2.2.

While the number of arguments used in simulate_capture_histories_with_sessions() may seem
exhaustive, it allows the function to simulate many different study scenarios with a large degree of
flexibility and specificity, and is beneficial for testing how the functions within acre may handle
particular edge cases. Ultimately, the ability to tailor so many parameters and covariates results in a
simulation that better serves the goals of this dissertation.

2.2.7.1 Order of steps in simulate_capture_histories_with_sessions()

The simulation occurs in the following order of steps:

1. The locations of mask cells and detectors are adjusted relative to the x and y ranges of the study
area.

2. The simulation method described in Section 2.1.3 is used to define forest areas, protected areas,
and altitudes across all the mask cells.

3. As described in Section 2.1.6, variables mountain and weather are created.

4. As described in Section 2.1.6, using the logistic distribution, set a value for g0 with the following
code: plogis(qlogis(g0_base) + mountain + weather) where mountain and weather are
the variables created in step 3, and g0_base is the user’s chosen baseline value for g0.

5. If villages exist, then for each mask cell calculate the distance to the centre of its nearest village.
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Figure 2.4: The effect of mountainous regions on observed bearing accuracy. Red represents the true
bearing and blue represents the observed bearing.
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6. For each mask cell, calculate the density of animals using Equation 2.3.

7. For each mask cell, generate a random number from a Poisson distribution where λ is the area of
the mask cell multiplied by its density calculated in step 6. This is the number of animals that
are truly present within the cell.

8. Sum the number of animals across all cells to get the total number of animals truly present across
the entire study area.

9. Within each mask cell, consider each animal to be ‘displaced’ from its centre by some distance on
the x axis and some other distance on the y axis, where these distances are less than or equal to
half the width of the mask cell. Randomly generate these distances from a uniform distribution.
Add these displacement distances to the coordindates of the centres of the mask cells to derive
the true coordinates of all the animals in the study area.

10. Use the fields package (Nychka et al. 2021) to calculate the Euclidean distance matrix among
all pairings of animals and detectors within the study area.

11. Use the distances calculated in step 10 with a half normal detection function (Equation 1.2) to
calculate the detection probabilities for all animals by all detectors in the study area. For this
detection function, g0 is the value determined in step 4 and σ is the value from the function
input. Store these probabilities in a matrix where each row represents an individual animal and
each column represents a detector. Then the value in the ith row and jth column of this matrix
is the probability of animal i being detected by detector j.

12. For each probability in the matrix created in step 11, use a binomial distribution with p equal
to this probability to randomly generate either a 0 or a 1. If the result is 1, then the animal is
considered to have been detected, and if the result is 0 then the animal has not been detected.
Hence, the value in the ith row and the jth column of the matrix stores whether or not animal
i has been detected by detector j. Essentially, this is now a binary capture history matrix. This
matrix differs from the one described in Section 1.2.1, however, as its columns represent detectors
rather than occasions.

13. In the matrix created in step 12, there are likely some or even many rows where all values
are 0. This indicates that a particular animal has not been detected by any detectors within
the study region. In a real world situation, it would not be possible to know that these ani-
mals were present at all, as evidently there would be no indication of their presence within the
study area. Therefore, individuals with row sums equal to zero are removed from the binary
capture history matrix, and the result of this is returned as a list item in the final output of
simulate_capture_histories_with_sessions().

14. The format_capture_histories() function is used to convert the binary capture history matrix
into a long form capture history table.

15. Use Equation 2.2 with cp_beta0 and cp_beta1 (if provided) to adjust the concentration param-
eter (κ) used in bearing estimation.

16. For every detection recorded in the long form capture history, use the find_bearings() helper
function to calculate the true bearing of the animal from the detector.

17. As described in Section 2.1.4, generate a random number from the von Mises distribution to
create some measurement error around the true bearings calculated in step 16. The result of this
random number generation is the observed bearings of the animals from each detector.

18. Join the observed bearings to the long form capture history table generated in step
14. This table is now ready to be returned as a list item in the final output of
simulate_capture_histories_with_sessions().
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19. Return all necessary list items.

The following section contains a demonstration of the usage of
simulate_capture_histories_with_sessions().

2.3 Simulation Examples

In the simulation’s GitHub repository, three files can be found which demonstrate the entire usage and
workflow of the simulation: simulate_example1.R, simulate_example2.R, and simulate_example3.R.

These examples follow the same general workflow, and the code in simulate_example1.R will be used
to illustrate the process. Please see the other two files to gauge how the function works with other
parameter values.

1. Load the necessary packages, and load the functions described above.

#Load packages -----------------------------------------------------------------
library(mvtnorm)
library(fields)
library(gstat)
library(CircStats)
library(dplyr)

#Call functions ----------------------------------------------------------------
source("functions/create_villages.R")
source("functions/find_bearings.R")
source("functions/format_capture_histories.R")
source("functions/simulate_capture_histories_with_sessions.R")
source("functions/generate_session_information.R")
source("functions/generate_session_locations.R")
source("functions/create_mask.R")

2. If desired, created a set number of villages.

#Create two villages -----------------------------------------------------------
village_locations1 <- create_villages(2, c(0, 8000), c(0, 700))

3. Set the number of sessions, and generate session covariates.

#Set number of sessions --------------------------------------------------------
num_sessions1 <- 3

#Generate session information --------------------------------------------------
sessions1 <- generate_session_information(num_sessions1,

c("rain", "sun", "snow", "overcast"),
c("mountain", "non-mountain"),
2012:2018, 1000, 1000, 40)

4. Set locations for the centres of the mask cells, as well as the detector locations.
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#Create a mask -----------------------------------------------------------------
mask1 <- create_mask(900, 600, 66, 66)

#Set detector locations --------------------------------------------------------
detectors1 <- matrix(c(rep(-1:1, each = 3)*100, rep(-1:1, 3)*100), ncol=2)

It is suggested to plot these together to ensure they make sense spatially. Figure 2.5 shows the result
of plotting these locations.
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Figure 2.5: Generated mask cell points overlaid with generated detector locations.

5. An optional but recommended step within the workflow may be to run
simulate_capture_histories_with_sessions() with the above variables and desired
parameters using only a single session so as to test its output before committing to running the
function with all sessions, which is more computationally expensive. This will be done here so
that the output when running simulate_capture_histories_with_sessions() once can be
shown.

#Test with the first session only ----------------------------------------------
single_session_demo <- simulate_capture_histories_with_sessions(

session_info = sessions1[1,],
alpha_forest = 400,
alpha_protected = 300,
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alpha_altitude = 400,
beta0 = -1, beta1 = -0.0002,
mask_locations = mask1,
detector_locations = detectors1,
g0_base = 0.85,
sigma = 85,
x_range = c(sessions1[1,5], sessions1[1,6]),
y_range = c(sessions1[1,7], sessions1[1,8]),
beta2 = -0.0002, beta3 = 2.5, beta4 = 0.00015,
beta5 = 0.5, beta6 = -0.2, beta7 = 1.9,
beta8 = -0.00001, beta9 = 0.000002,
village_locations = village_locations1,
cp_beta0 = log(50), cp_beta1 = -1)

Using the head() function, a preview of the various output list components from the result of running
a single session simulation can be shown as below:

#Binary capture history
head(single_session_demo$binary_capture_history)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 0 0 0 0 0 0 1 0 0
## [2,] 1 0 0 0 0 0 0 0 0
## [3,] 1 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 1 0 0
## [5,] 0 0 0 0 1 0 0 0 0
## [6,] 0 0 0 0 1 0 0 0 0

#Long form capture history
head(single_session_demo$long_form_capture_history)

## session ID occasion trap bearing
## 1 1 1 1 7 3.154098
## 2 1 2 1 1 3.530155
## 3 1 3 1 1 2.884174
## 4 1 4 1 7 4.270040
## 5 1 5 1 5 3.773105
## 6 1 6 1 5 3.511861

#Animal locations
head(single_session_demo$animal_locations)

## animal_x animal_y
## [1,] 378.29781 -245.2880
## [2,] 435.35161 -229.1750
## [3,] -45.14103 -219.0525
## [4,] 135.45544 -217.0646
## [5,] 468.03980 -225.9193
## [6,] -28.80107 -198.1939
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#Detected animal locations
head(single_session_demo$detected_animal_locations)

## animal_x animal_y ID
## 1 418.07025 35.96080 1
## 2 72.67465 93.86708 2
## 3 219.81108 89.55934 3
## 4 301.05585 88.72414 4
## 5 144.99168 104.08055 5
## 6 172.09568 121.41952 6

#Forest area
head(single_session_demo$forest)

## [1] "1" "1" "1" "0" "0" "0"

#Protected area
head(single_session_demo$protected_areas)

## [1] "0" "0" "0" "0" "0" "0"

#Altitude
head(single_session_demo$altitude)

## [1] 4566.706 4490.872 4486.379 4347.740 4152.297 4198.350

#Detector locations
head(single_session_demo$traps)

## x y
## 1 152 249
## 2 152 349
## 3 152 449
## 4 252 249
## 5 252 349
## 6 252 449

#Mask cell locations
head(single_session_demo$mask)

## x y
## 92 44.30769 -232.5385
## 93 72.00000 -232.5385
## 94 99.69231 -232.5385
## 95 127.38462 -232.5385
## 96 155.07692 -232.5385
## 97 182.76923 -232.5385
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6. If the results after creating data for a single session simulation look reasonable, then a for loop
may be used to loop through all the sessions. Empty lists can be initiated before running the
loop to provide places to store the components of the simulation output. The do.call() and
lapply functions can be used subsequently to consolidate the output from the different sessions
into single data frames.

#Run simulation with all sessions ----------------------------------------------
session_sim_capt_hist <- vector(mode = "list", length = num_sessions1)
session_sim_bin_capt_hist <- vector(mode = "list", length = num_sessions1)
session_animal_locations <- vector(mode = "list", length = num_sessions1)
session_sim_forest <- vector(mode = "list", length = num_sessions1)
session_sim_altitude <- vector(mode = "list", length = num_sessions1)
session_sim_protected <- vector(mode = "list", length = num_sessions1)
session_sim_mask <- vector(mode = "list", length = num_sessions1)
session_sim_traps <- vector(mode = "list", length = num_sessions1)

for(i in 1:num_sessions1) {
session_sim <- simulate_capture_histories_with_sessions(

session_info = sessions1[i,],
alpha_forest = 400,
alpha_protected = 300,
alpha_altitude = 400,
beta0 = -1, beta1 = 0.0002,
mask_locations = mask1,
detector_locations = detectors1,
g0_base = 0.85,
sigma = 85,
x_range = c(sessions1[i,5], sessions1[i,6]),
y_range = c(sessions1[i,7], sessions1[i,8]),
beta2 = -0.0002, beta3 = 2.5, beta4 = 0.00015,
beta5 = 0.5, beta6 = -0.2, beta7 = 1.9,
beta8 = -0.00001, beta9 = 0.000002,
village_locations = village_locations1,
cp_beta0 = log(50), cp_beta1 = -1)

session_sim_capt_hist[[i]] <- session_sim$long_form_capture_history
session_sim_bin_capt_hist[[i]] <- session_sim$binary_capture_history
session_animal_locations[[i]] <- session_sim$animal_locations
session_sim_forest[[i]] <- session_sim$forest
session_sim_altitude[[i]] <- session_sim$altitude
session_sim_protected[[i]] <- session_sim$protected_areas
session_sim_mask[[i]] <- session_sim$mask
session_sim_traps[[i]] <- session_sim$traps

}

all_animal_locations1 <- do.call(rbind, session_animal_locations)
all_capt_hist1 <- do.call(rbind, session_sim_capt_hist)
all_bin_capt_hist1 <- do.call(rbind, session_sim_bin_capt_hist)
all_forest1 <- do.call(rbind, session_sim_forest)
all_altitude1 <- do.call(rbind, session_sim_altitude)
all_protected1 <- do.call(rbind, session_sim_protected)
all_mask1 <- do.call(rbind, session_sim_mask)
all_traps1 <- lapply(session_sim_traps,
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function(dat) data.frame(x = dat[, 1], y = dat[, 2]))

The resulting data frames from this code are of the same form as those shown above, but include data
over all sessions.

Once the full simulation has been run, it is helpful to contextualise the result by observing the location
where each session occurs in space, along with locations of detectors and villages. This can be done
using the following code, the result of which is shown in Figure 2.6.

plot(all_mask1, cex=0.01, xlim=c(-375, 7000))
points(all_traps1[[1]], col="red", pch=19, cex=0.2)
points(all_traps1[[2]], col="red", pch=19, cex=0.2)
points(all_traps1[[3]], col="red", pch=19, cex=0.2)
points(village_locations1$x, village_locations1$y, col="blue", pch=19, cex=0.8)
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Figure 2.6: The locations of each session and their detectors (red) in the simulation exmaple, along
with village locations (blue).
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Chapter 3

Using Simulated Data with acre

The GitHub repository for this project contains a file acre_model_examples.R, which documents how
the output from the three simulation examples saved in simulate_example1.R, simulate_example2.R,
and simulate_example3.R can be used to create various ASCR models with acre.
To illustrate how acre can be used, this section will elaborate on the content of acre_model_examples.R
that deals with the output of simulate_example1.R, the creation of which is shown in the previous
chapter. The same variables created above will continue to be used henceforth.
acre can be installed from the GitHub repository https://github.com/b-steve/acre (Stevenson 2023).
To use it with R, it must first be loaded using library():

library(acre)

Before exploring models with acre, a data object must be generated. To create the data object, one
must first initialise a data frame that contains information about the covariates over all or some of the
mask cells. An exception to the covariates provided to this data frame is any covariate where a distance
to a particular feature—in this case, the ‘villages’—is measured, as these are handled separately during
the creation of the acre object.
Unlike ascr, acre does not require the user to have information about all covariates for every single
mask cell. This is hugely beneficial as researchers often do not have covariate information at this level
of granularity. For example, altitude measurements may be taken at various points across the study
area, but measuring the altitude within every individual mask cell is time-consuming and impractical.
A demonstration of how using acre with limited covariate information compares to using it with full
covariate information is shown in Section 3.7.
Additionally, a pre-specified mask is not actually required to use acre. The read.acre() function
introduced below can create a grid of mask cells internally if a mask is not provided to it.
In this example, each row of this covariate data frame represents one particular mask cell. It may be
initialised as below.

#Create covariates data frame --------------------------------------------------
cov_df1 <- data.frame(x = all_mask1[,1],

y = all_mask1[,2],
forest = as.vector(t(all_forest1)),
altitude = as.vector(t(all_altitude1)),
protected = as.vector(t(all_protected1)))
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An acre object can now be produced by employing the read.acre() function, as shown below. The
first two arguments are the long form capture history and the matrix containing locations of all the
detectors over all the study sessions. The next argument, control_create_mask(), is a list containing
a mask buffer. The goal of the buffer is to establish a region around the boundary of the mask cells
where it is feasible that animals may be present, even if this region is not technically within the study
area. This is necessary in order to account for animal movement outside of the boundary of the mask
cells. In this example, the buffer has been set to the value that was used for σ in the simulation
that created the data, multiplied by five. This is to allow for the distance that sound can travel from
its source, multiplied to generously consider any potential cases where an animal may be heard from
unusually far away. While it can increase computation times, using a buffer that is unnecessarily large
does not reduce model accuracy, whereas using a buffer that is too small can reduce accuracy.

In this example, the object passed to the loc_cov argument is the data frame created immediately
above, and the session_cov() argument is set to the data frame containing the session covariates,
which was previously created using the generate_session_information() function. The locations of
the simulated villages, village_locations1, is passed to the function via the dist_cov argument in
the form of a list, as this is the data structure the argument requires. The list is, specifically, a named
list, and therefore any subsequent mention of the village locations in the context of acre objects and
models in this example will be referred to as villages, the name given to the object within the list.

#Create an acre object ---------------------------------------------------------
acre_object1 <- read.acre(all_capt_hist1, all_traps1,

control_create_mask = list(buffer = 85*5),
loc_cov = cov_df1,
session_cov = sessions1,
dist_cov = list(villages = village_locations1)))

Finally, ACR models can be fitted using fit.acre() with the data object that was just produced.
In this example, a null model is created initially, followed by models where density changes with
respect to some covariates, and, ultimately, some variations of what can be considered ‘full’ models.
The summary() function can be used to view parameter estimates, and AIC() may be used for model
selection and comparison.

3.1 Null Model

#Create a null model -----------------------------------------------------------
acre_model1.1 <- fit.acre(acre_object1)

#Summary output ----------------------------------------------------------------
summary(acre_model1.1)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %

36



## g0 0.958730 0.018595 0.902416 0.9832
## sigma 85.827157 1.232124 83.445895 88.2764
## kappa 21.820093 1.228559 19.540268 24.3659
## D 15.942275 0.581462 14.842411 17.1236

In this model a constant density estimate, depending on no variables, is about 15.9 animals per
hectare (95% confidence interval: 14.8, 17.1). Using the estimated values of g0 (0.96) and σ (85.8),
a half-normal detection function can be plotted (Figure 3.1). acre makes this easy to do with its
show_detfn() function, as demonstrated below:

show_detfn(acre_model1.1)
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Figure 3.1: The estimated half-normal detection function of the null model.

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.1)

## [1] -4574.598

The AIC value produced, -4574.6, can be used to evaluate how well subsequent models are supported
by the data in comparison.
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3.2 Model where Density Varies with Forest Coverage

To add covariates into the model, the par_extend_model argument—which requires a list—can be
used within fit.acre() as shown below:

#Create a model where density depends on forest coverage ----------------------
acre_model1.2 <- fit.acre(acre_object1, par_extend_model = list(D =~forest))

As with the null model, the summary() and AIC() functions can be used if desired.

#Summary output ----------------------------------------------------------------
summary(acre_model1.2)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0 0.962475 0.018317 0.904693 0.9858
## sigma 84.719804 1.160984 82.474603 87.0261
## kappa 21.686067 1.205942 19.446716 24.1833
## D.(Intercept) -0.183487 0.293357 -0.758457 0.3915
## D.forest1 3.511265 0.298158 2.926886 4.0956
##
##
## Extended parameters link functions:
## D : log

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.2)

## [1] -5205.672

As expected, a lower value for AIC is produced for this model than that produced from the null
model (-5205.7 compared to -4574.6), as a model incorporating an important variable should perform
better than one without any important variables. In the summary output, the addition of a row for
D.forest1 can now be seen, indicating the model’s estimate of the coefficient for ‘forest’ in the density
equation. Given that this model is lacking a number of important covariates, however, this estimate
may not be expected to be a true reflection of the role of forest coverage in dictating animal density,
i.e. at this stage it is not an accurate estimate of β3 in Equation 2.3.

To determine the model’s estimate of the multiplicative effect that the presence of forest has on density,
one can simply exponentiate the point estimate of D.forest1: exp(3.51) = 33.4. Therefore, based
on this model, it can be estimated that forested areas have 33.4 times the density of animals as
non-forested areas.

For an intuitive way to gauge how well this model has performed, its density surface can be plotted
using the following code.
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#The session number can be replaced with any session of interest
show_Dsurf(acre_model1.2, session = 1)

This density surface can then be compared to a plot of the distribution of forest in the study area,
which may be generated as follows:

#Observe the first plot
plot(acre_object1, types = "covariates", ask = FALSE)

These plots are shown in Figure 3.2, and demonstrate what appears to be a one-to-one correlation
between animal density and forest coverage. Thus, the model has performed as expected in this regard.

Figure 3.2: Plot of forest coverage and estimated density when density is modelled using forest as a
covariate.

3.3 Model where Density Varies with Protected Area

In the same fashion as the preceding model, density may also be modelled with respect to protected
areas.

#Create a model where density depends on protected area -----------------------
acre_model1.3 <- fit.acre(acre_object1, par_extend_model = list(D =~protected))

#Summary output ----------------------------------------------------------------
summary(acre_model1.3)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
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## Estimate Std. Error 2.5 % 97.5 %
## g0 0.955915 0.018206 0.902894 0.9806
## sigma 85.132708 1.162265 82.884917 87.4415
## kappa 21.468543 1.188807 19.260512 23.9297
## D.(Intercept) 1.668159 0.082318 1.506818 1.8295
## D.protected1 2.092878 0.097227 1.902317 2.2834
##
##
## Extended parameters link functions:
## D : log

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.3)

## [1] -5136.98

The AIC here (-5136.98) is higher than that of acre_model1.2 (-5205.672), which suggests that
modelling density solely using protected area as a covariate performs worse than using only forest
coverage; in essence, forest coverage is a more important covariate when determining density. This
can be further verified by exponentating D.protected to calculate the estimated multiplicative effect
of protected area on density: exp(2.09) = 8.08. This demonstrates that, in this simulation, protected
areas have about 8.08 times the density of non-protected areas, compared to forest areas which have
about 33.4 times the density of non-forest areas.

Once again, a density plot can be compared to a plot of protected areas, using the same functions.
The output is shown in Figure 3.3.

show_Dsurf(acre_model1.3, session = 1)
#Observe the third plot
plot(acre_object1, types = "covariates", ask = FALSE)

Figure 3.3: Plot of protected area and estimated density when density is modelled using protected
area as a covariate.
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3.4 Model where Density Varies with Altitude

Next, a model using altitude to explain density is demonstrated, Figure 3.4 demonstrates the compar-
ison in estimated density and altitude.

#Create a model where density depends on altitude -----------------------------
acre_model1.4 <- fit.acre(acre_object1, par_extend_model = list(D =~altitude))

#Summary output ----------------------------------------------------------------
summary(acre_model1.4)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0 9.5871e-01 1.8602e-02 9.0238e-01 0.9831
## sigma 8.5814e+01 1.2325e+00 8.3432e+01 88.2644
## kappa 2.1814e+01 1.2286e+00 1.9534e+01 24.3599
## D.(Intercept) 2.5602e+00 7.7424e-02 2.4085e+00 2.7120
## D.altitude 7.8884e-05 2.5157e-05 2.9578e-05 0.0001
##
##
## Extended parameters link functions:
## D : log

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.4)

## [1] -4582.651

In this case, the AIC value of -4582.651 is higher than those of both of the previous two models,
indicating that using the altitude covariate alone doesn’t perform quite as well.

The estimate of 0.0000789 for D.altitude can be exponentiated (exp(0.0000789) = 1.000079) and
the result interpreted as, for every 1m increase in altitude, the number of animals is multiplied by
1.000079. This means that, for every additional kilometer of altitude, there is about a 7.9% increase in
number of animals. An additional kilometer is a significant increase in altitude, so with such a small
effect size, it is unsurprising that models using the other covariates are preferable to this one.

Again, density surface can be plotted and compared to altitude distribution. Clear similarities in their
general shapes can be seen (Figure 3.4).

show_Dsurf(acre_model1.4, session = 1)
plot(acre_object1, types = "covariates") #Hit ENTER on keyboard three times
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Figure 3.4: Plot of altitude and estimated density when density is modelled using altitude as a covariate.

3.5 Model where Density Varies with Distance to Nearest Vil-
lage

The last single covariate used to model density alone in this demonstration is distance to nearest
village.

#Create a model where density depends on village locations --------------------
acre_model1.5 <- fit.acre(acre_object1, par_extend_model = list(D =~villages))

#Summary output ----------------------------------------------------------------
summary(acre_model1.5)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0 9.5875e-01 1.8594e-02 9.0243e-01 0.9832
## sigma 8.5821e+01 1.2319e+00 8.3440e+01 88.2700
## kappa 2.1819e+01 1.2285e+00 1.9540e+01 24.3652
## D.(Intercept) 2.9001e+00 6.2056e-02 2.7785e+00 3.0218
## D.villages -3.6749e-05 1.4442e-05 -6.5055e-05 0.0000
##
##
## Extended parameters link functions:
## D : log
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#AIC ---------------------------------------------------------------------------
AIC(acre_model1.5)

## [1] -4579.119

The resulting AIC (-4579.119) is very similar to that produced by acre_model1.4.
While conducting this project, it was discovered that the show_Dsurf() function used to display
density plots contains a bug which prevents plotting when objects that were given to the d_cov
argument within read.acre are used as covariates in models. Therefore, any models using villages
as a covariate do not currently have the ability to have their density estimates plotted. This has been
raised as a GitHub issue and will be resolved by the package author.

3.6 Full Model

The next model in this demonstration is the full model; all covariates are used as explanatory variables
for their suitable parameters, a distinguishing feature of acre.

#Create a full model ----------------------------------------------------------
acre_model1.6 <- fit.acre(acre_object1,

par_extend_model = list(D =~forest +
protected +
altitude +
villages,

g0 =~weather +
terrain,

kappa =~terrain))

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.6)

## [1] -5512.784

Unsurprisingly, the AIC value produced here (-5512.8) is the lowest of all models in this demonstration.
This reveals that acre is correctly identifying the importance of added covariates; since all covariates
affected parameters within the simulation, the importance of all covariates should be reflected in model
accuracy.
Before examining the accuracy of the model’s summary output, it is helpful to plot the estimated
detection functions when different covariate conditions exist. show_detfun() accepts an argument
new_covariates which takes in a data frame of particular covariates; in this case it may be used
for particular weather conditions or terrain. For example, the following code produces the model’s
detection function for a sunny mountainous session compared to a rainy mountainous session. The
output is displayed in Figure 3.5.

show_detfn(acre_model1.6, new_covariates = data.frame(weather = c("sun", "rain"),
terrain = rep("mountain", 2)),

col= c("red", "blue"))
legend("topright", legend = c("Sunny, mountainous", "Rainy, mountainous"),

lty = 1, col = c("red", "blue"))
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Figure 3.5: The detection functions of a sunny mountainous session compared to a rainy mountainous
session.

This visually demonstrates that the model has identified that detection is generally better when a
session is sunny compared to when it is rainy, which is true to the simulation. It should be noted that
in this particular simulation, only two weather conditions were present in the sessions: sun and rain.
Therefore, this model does not identify any other weather conditions.

Detection functions could also be used to compare the effects of mountainous and non-mountainous
sessions on detection, as below. The output for this code is seen in Figure 3.6.

show_detfn(acre_model1.6, new_covariates = data.frame(weather = rep("sun", 2),
terrain = c("mountain",

"non-mountain")),
col= c("red", "blue"))

legend("topright", legend = c("Sunny, mountainous", "Sunny, non-mountainous"),
lty = 1, col = c("red", "blue"))

Here it can be seen that mountains have a marginally negative impact on detection probabilities, which
is also true to the simulation.

After visually observing the model’s estimated effects that covariates have on detection probability, it
is then a good idea to examine the full model’s summary output.

#Summary output ----------------------------------------------------------------
summary(acre_model1.6)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
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Figure 3.6: The detection functions of a sunny mountainous session compared to a sunny non-
mountainous session.

## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0.(Intercept) 2.1961e+00 3.1716e-01 1.5745e+00 2.8177
## g0.weathersun 1.7379e+00 1.3438e+00 -8.9588e-01 4.3716
## g0.terrainnon-mountain 1.2815e+01 1.6229e+03 -3.1681e+03 3193.6895
## sigma 8.4991e+01 1.1105e+00 8.2842e+01 87.1951
## kappa.(Intercept) 2.9305e+00 6.1791e-02 2.8093e+00 3.0516
## kappa.terrainnon-mountain 8.7206e-01 1.2643e-01 6.2426e-01 1.1199
## D.(Intercept) -9.0922e-02 4.8952e-01 -1.0504e+00 0.8685
## D.forest1 2.7079e+00 2.6243e-01 2.1936e+00 3.2223
## D.protected1 1.6686e+00 1.1062e-01 1.4518e+00 1.8854
## D.altitude -1.3934e-04 9.7546e-05 -3.3052e-04 0.0001
## D.villages 3.0025e-05 5.2016e-05 -7.1924e-05 0.0001
##
##
## Extended parameters link functions:
## g0 : logit
## kappa : log
## D : log

Here, g0.(Intercept) corresponds to the logit of the initial value of g0 at baseline factor variables
(g0_base, as described in Section 2.1.6). Therefore, to examine the accuracy of the model’s estimate
of the baseline value of g0, the inverse logit can be used as follows:

plogis(2.1961)

## [1] 0.8998987

Pleasingly, this result is very close to the true value of g0_base (0.85) that was passed into the
simulation.
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Performing the same operation on the limits of the estimate’s 95% confidence interval produces an
interval that does contain the true value of g0_base:

cat(plogis(1.5745), plogis(2.8177))

## 0.8284242 0.9436248

As mentioned, this simulation only produced two of the four possible states of the weather covariate:
sun and rain. Therefore, the summary output for this model only displays the effect of sun relative to
the effect of rain on g0, g0.weathersun. As discussed in Section 2.1.6, the ‘weather’ variable involved
in adjusting g0 takes the value β5 multiplied by 2 if the session is rainy and β5 multiplied by 4 if the
session is sunny. Therefore, sun has twice the effect on g0 as rain. The model’s estimate of 1.7 for
g0.weathersun is relatively close to this true value of 2.

In the simulation, the parameter responsible for determining the effect of mountains on g0 is β6.
This value measures the relative effect of the presence of mountains, where absence of mountains is
considered baseline. Since mountains are likely to have a negative impact on detection probability,
β6 was given a negative value in this simulation. However, this model has treated the presence of
mountains as the baseline, and has generated g0.terrainnon-mountain, which is the relative effect
of not having mountains in a session. It can therefore be expected that g0.terrainnon-mountain has
a negative relationship to β6. The value of β6 in the simulation was -0.2, while the estimated value of
g0.terrainnon-mountain is 12.8, and this directional difference is to be expected. However, it should
be noted that the confidence interval for g0.terrainnon-mountain is very wide and contains 0; this
is likely because there is not enough information provided from only three sessions when effect size of
mountains on g0 is small and weather is simultaneously affecting the same parameter. Of the three
generated sessions, one is sunny and mountainous, one is rainy and mountainous, and one is sunny and
non-mountainous; if a fourth session that happened to be rainy and non-mountainous existed, then
a narrower confidence interval for g0.terrainnon-mountain could be expected. Narrower confidence
intervals are observed for estimates using the other simulation examples in this project’s GitHub
repository, which have greater numbers of sessions.

sigma, which is quite obviously the estimate of σ, has been estimated to a very high degree of accuracy
here: 84.99 compared to the true value of 85.

When it comes to the coefficient estimates involved in adjusting κ (the concentration parameter used
in the von Mises distribution), this model also does a good job. The estimate for kappa.(Intercept),
which corresponds to cp_beta0, is 2.9, while the true value passed to the simulation was log(50),
which is roughly 3.9. kappa.terrainnon-mountain is equivalent to the negative of cp_beta1, on
account of the baseline being presence of mountains, rather than absence of them. The true value
of cp_beta1 was -1, while the estimate of kappa.terrainnon-mountain is 0.87, and this directional
difference is correct. The negative of the true value is 1, which is contained in the confidence interval
for kappa.terrainnon-mountain (0.6, 1.1).

The estimates D.forest1, D.protected1, D.altitude, and D.villages can be compared to their
true values β3, β7, β8, and β4 respectively. Table 3.1 shows this comparison.

Table 3.1: Comparison of true parameters and model estimates.

Parameter Name in summary output True value Model estimate
β3 D.forest1 2.50 2.70
β7 D.protected1 1.90 1.70
β8 D.altitude (per km) -0.01 -0.14
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Parameter Name in summary output True value Model estimate
β4 D.villages (per km) 0.15 0.03

Estimates for β3 and β7 are very close to their true values. Given how minute the effects of altitude
and distance to villages are, it is not concerning that β4 and β8 are not as proportionally close to their
true values.
Overall, the accuracy of the full model’s estimates can be visualised in Figure 3.7.

β0

β3

β4 (per 10km)

β7

β8 (per 10km)

κ

σ 10

cpbeta1 (negative)

g0base

g0non−mountain (negative)

weathersun

0 5 10 15

Estimate

True value

Figure 3.7: Model estimates (with 95% confidence intervals) and their true parameter values. Note:
the confidence interval limits for g0non−mountain have been truncated, and σ, β4, and β8 have been
scaled in order to better fit on the plot.

Since this model contains villages as a covariate, it is not possible to plot its density estimates with
the current version of acre. So that some version of the plot may be illustrated, another ‘full’ model
will be created, omitting villages only.

#Create a full model (minus villages) ------------------------------------------
acre_model1.6.1 <- fit.acre(acre_object1,

par_extend_model = list(D =~forest +
protected +
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altitude,
g0 =~weather +

terrain,
kappa =~terrain))

With the consideration in mind that village locations were not accounted for in this model, a density
plot can now be produced using this less complete model, so as to get at least some visual idea of density.
This can be directly compared to the true locations of all the animals (detected and undetected) in
the study area.

par(mfrow=c(1,2))
show_Dsurf(acre_model1.6.1, session = 1)
plot(session_animal_locations[[1]], pch = 19,

ask = FALSE, xlab = "", ylab = "",
col = rgb(0.5, 0.6, 0.1, 0.25),
xlim = c(-250, 800),
ylim = c(-400, 1100))
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Figure 3.8: Plot of the ’full’ model’s estimated density surface (left) compared to the true locations of
animals (right).

This plot reveals a few key areas of higher density, while much of the study area contains few to no
animals. Interestingly, the shapes of forest areas, protected areas, and regions of high/low altitude
can all be distinguished upon the density surface; the shapes of each of these appear layered upon one
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another. This demonstrates that the model is correctly accounting for all spatial effects. Furthermore,
comparing the estimated density surface to the true locations of all animals in the study area reveals
that the model has correctly identified regions of high, medium, and low density.

3.7 Modelling Density Only

In the interest of comparing acre directly to ascr, a model using all spatial covariates to model density
alone should be created, as this is what constitutes a ‘full model’ in ascr. Distance to nearest village
has been deliberately left out in order to allow for plotting.

#Create a model where density depends on forest, protected areas and altitude
acre_model1.6.2 <- fit.acre(acre_object1,

par_extend_model = list(D =~forest +
protected +
altitude))

A discussion of the summary output of this model and an evaluation of its performance can be found
in Chapter 4.

3.8 Full Model when Less Covariate Information is Known

As discussed earlier in this chapter, covariate information is often not known for all mask points. It is
important to evaluate acre’s accuracy at extrapolating from the covariate information it does receive,
as well as ensuring that limited covariate information doesn’t drastically impact parameter estimates.

To simulate this, a random subset of covariate data can be taken and used to create a ‘less complete’
acre object. Here, the sample() function is employed to randomly select 500 covariate data points
from the previously created covariate data frame, cov_df.

#Create an acre object with incomplete covariate information -------------------
acre_object1_incomplete <- read.acre(all_capt_hist1, all_traps1,

control_create_mask = list(buffer = 85*5),
loc_cov = cov_df1[sample(nrow(cov_df1), 500),],
session_cov = sessions1,
dist_cov = list(villages = village_locations1))

A full model is then built from this new acre object:

#Create a full model with incomplete covariate information ---------------------
acre_model1.7 <- fit.acre(acre_object1_incomplete,

par_extend_model = list(D =~forest +
protected +
altitude +
villages,

g0 =~weather +
terrain,

kappa =~terrain))
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The summary output and AIC value may then be compared to the model where all covariate infor-
mation was known. Table 3.2 demonstrates the differences in the parameter estimates between this
model and acre_model1.6.

#Summary output ----------------------------------------------------------------
summary(acre_model1.7)

Table 3.2: Comparison of model parameter estimates.

Parameter Complete information Incomplete information
g0.(Intercept) 2.196 2.410
g0.weathersun 1.738 1.187
g0.terrainnon-mountain 12.815 2.394
sigma 84.991 85.923
kappa.(Intercept) 2.930 2.914
kappa.terrainnon-mountain 0.872 0.848
D.(Intercept) -0.091 -1.600
D.forest1 2.708 2.168
D.protected1 1.669 0.657
D.altitude (per km) -0.139 0.529
D.villages (per km) 0.030 0.321

All parameter estimates have stayed very close to the estimates produced by the model based off full
covariate information.

#AIC ---------------------------------------------------------------------------
AIC(acre_model1.7)

## [1] -5160.166

As is to be expected, a model based on less complete information results in a higher AIC value than
the model with information across all mask cells, but the parameter and coefficient estimates maintain
a high degree of accuracy.

The reason for the conservation of accuracy is acre’s process of spatial interpolation. It takes the
covariate information it receives for the mask cells for which it is available and extrapolates to estimate
covariate information for the remaining cells. The precision with which it performs this process can be
examined by plotting the distribution of the spatial covariates produced by the incomplete acre object
and comparing it to the true distribution of spatial covariates which was produced by the complete
acre object. These comparisons are demonstrated in Figure 3.9.

plot(acre_object1, types = "covariates")
plot(acre_object1_incomplete, types = "covariates")

It is obvious here that acre has done a good job at approximating the overall distributions of all the
spatial covariates. The general patterns and shapes produced by plotting forest coverage, protected
area, and altitude are all akin to their true distributions within the study area; it could be said that
it has simply resulted in a ‘smoothened’ approximation of the truth.
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Figure 3.9: Plots of true spatial covariates (left) and estimated spatial covariates when information is
only known for some mask cells (right).
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Once again, it is not possible to plot the density estimates of this model, as it contains villages as a
covariate. Therefore another model will replicate this model, without the village locations, in order to
illustrate density estimates from this model visually. The density surface for this model, compared to
that of the ‘full information’ model, is shown in Figure 3.10.

#Create a full model with incomplete covariate information, without villages ---
acre_model1.7.1 <- fit.acre(acre_object1_incomplete,

par_extend_model = list(D =~forest +
protected +
altitude,

g0 =~weather +
terrain,

kappa =~terrain))

par(mfrow=c(1,2))
show_Dsurf(acre_model1.7.1, session = 1)
show_Dsurf(acre_model1.6.1, session = 1)
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Figure 3.10: Plot of the ’full’ model’s estimated density surface when not all covariates are known for
each mask cell (left), compared to the density surface produced by the same model when all covariates
are known for each mask cell (right).

Not unlike the estimated spatial covariate distributions, the estimated density surface produced
by this model can be considered a ‘smoothened’ version of the density surface constructed by
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acre_model1.6.1. The overall density patterns are recognisable, and elements of the spatial
covariates can be distinguished.

A key difference is that the model estimates more ‘mid-range’ density areas, rather than mostly areas
that are either high or low density. This is an interesting result of acre‘s spatial interpolation process.
When covariate information isn’t known across all mask cells, acre must make more general estimates
of regions of covariates. For example, in this simulation, there are regions within the study area that
could be considered 'mostly protected area’, despite having smaller subregions within them that are not
protected areas. During spatial interpolation, acre must determine the broader regions to be ‘mostly
protected area’ and therefore the non-protected area subregions within them become generalised as
part of the protected region too. This is clearly seen in Figure 3.9. Therefore, rather than comparing
the effects of ‘true protected areas’ to ‘true non-protected areas’, acre must compare effects of ‘mostly
protected areas’ to ‘mostly non-protected areas’. A consequence of this is that the effect of protected
areas is slightly dampened, and therefore a less extreme outcome is seen in the comparison of density
estimates between protected and non-protected areas. Thus, density estimates can be expected to
be lower for models fitted with less covariate information when those covariates have the effect of
increasing density.
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Chapter 4

Using Simulated Data with ascr
vs. acre

Not all the models produced with acre in the preceding chapter can be reproduced with ascr, on
account of ascr's more limited features. However, where acre models can be reproduced and compared
to their corresponding ascr models, they should. As discussed in the Introduction, when evaluating
new software, the output of established software should be used as a premise of ‘truth’. This project’s
GitHub repository contains a file ‘acre_vs_ascr.R’ which contains a more comprehensive version of
the code that forms the basis of this final chapter.
ascr can be downloaded from the following GitHub repository and then loaded into R using
library(ascr).

4.1 Preparing to Use ascr

Firstly, ascr requires capture histories and detector locations to be stored in a named list, which can
be done as shown here:

#ascr requires capture histories and traps to be in a named list format --------
ascr_capt <- create.capt(captures = all_capt_hist1, traps = all_traps1)

To allow for a fair comparison of the packages, the same mask used in the acre models will be used
here. This can be extracted from acre_object1 as shown below.

#Use the same mask used in acre to ensure a fair comparison --------------------
ascr_mask1 <- acre_object1$mask

The final preparation step is to create a list, where each list element contains a data frame of covariates
from one session.

#Create a list of data frames (one for each session) with covariate information
cov_df_ascr <- list()
for(i in 1:nrow(sessions1)) {

cov_df_ascr[[i]] <- subset(acre_object1$par.extend$data$mask, session == i)
}
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4.2 Null Model

The first comparison available here is naturally the null model. The null model can be created simply
with the following code:

#Create the null model ---------------------------------------------------------
ascr_model1.1 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1)

The summary output can then be compared to the summary output of the null model created with
acre:

#View summary and compare to acre's null model summary -------------------------
summary(ascr_model1.1)

## Detection function: Halfnormal
## Information types: Bearings
##
## Parameters:
## Estimate Std. Error
## D 15.94228 0.5815
## g0 0.95873 0.0186
## sigma 85.82716 1.2321
## kappa 21.82009 1.2286
## ---
##
## esa.1 20.11420 0.3430
## esa.2 20.11420 0.3430
## esa.3 20.11420 0.3430

summary(acre_model1.1)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0 0.958730 0.018595 0.902416 0.9832
## sigma 85.827157 1.232124 83.445895 88.2764
## kappa 21.820093 1.228559 19.540268 24.3659
## D 15.942275 0.581462 14.842411 17.1236

Besides differences in rounding, estimates and standard errors are exactly the same for both models.

Density surfaces may also be plotted for a visual comparison of both models (Figure 4.1). Given that
both models estimate a constant density of 15.9 animals per hectare across the entire study area, the
density surfaces for the null models are identical.
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#View density surface and compare to acre's null model density surface ---------
par(mfrow=c(1, 2))
show.Dsurf(ascr_model1.1)
show_Dsurf(acre_model1.1)
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Figure 4.1: Null model density surfaces produced by ascr (left) and acre (right)

4.3 Models where Density Depends on One Covariate

Next, models where density depends on a single covariate can be created with ascr and compared
to their acre counterparts. This is done via the argument ihd.opts which is passed to fit.ascr().
ihd.opts accepts a named list, where one component is the model formula and another is the data
frame containing all the covariate information.

4.3.1 Density depends on forest coverage

Modelling density using forest coverage as the only covariate can be done with the following code. The
summary outputs reveal that acre has been faithful to its ‘source of truth’. A plot of the estimated
density surface compared to its corresponding acre model (Figure 4.2) further highlights acre’s fidelity
to ascr.
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#Create model where density depends on forest coverage -------------------------
ascr_model1.2 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1,

ihd.opts = list(model = ~forest,
covariates = cov_df_ascr,
scale = FALSE))

#View summary and compare to summary of corresponding acre model ---------------
summary(ascr_model1.2)

## Detection function: Halfnormal
## Information types: Bearings
##
## Parameters:
## Estimate Std. Error
## D.(Intercept) -0.18349 0.2934
## D.forest1 3.51126 0.2982
## g0 0.96248 0.0183
## sigma 84.71980 1.1610
## kappa 21.68607 1.2059
## ---
## esa.1 19.79510 0.3156
## esa.2 19.79510 0.3156
## esa.3 19.79510 0.3156

summary(acre_model1.2)

## Detection function: Halfnormal
## Number of sessions: 3
## Information types: Bearings
## Confidence interval method: Wald
##
##
## Parameters:
## Estimate Std. Error 2.5 % 97.5 %
## g0 0.962475 0.018317 0.904693 0.9858
## sigma 84.719804 1.160984 82.474603 87.0261
## kappa 21.686067 1.205942 19.446716 24.1833
## D.(Intercept) -0.183487 0.293357 -0.758457 0.3915
## D.forest1 3.511265 0.298158 2.926886 4.0956
##
##
## Extended parameters link functions:
## D : log

#View density surface and compare density surface of corresponding acre model --
par(mfrow=c(1, 2))
show.Dsurf(ascr_model1.2)
show_Dsurf(acre_model1.2)
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Figure 4.2: Forest coverage model density surfaces produced by ascr (left) and acre (right)
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4.3.2 Density depends on protected areas

The same process can be used to model density with respect to protected areas. Summary outputs
reveal that estimates produced by acre are virtually identical to those produced by ascr (there only
exist differences in rounding), and Figure 4.3 displays the resulting density surfaces generated by each
package.

#Create model where density depends on protected areas -------------------------
ascr_model1.3 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1,

ihd.opts = list(model = ~protected,
covariates = cov_df_ascr,
scale = FALSE))

#View summary and compare to summary of corresponding acre model ---------------
summary(ascr_model1.3)
summary(acre_model1.3)

#View density surface and compare density surface of corresponding acre model --
par(mfrow=c(1, 2))
show.Dsurf(ascr_model1.3)
show_Dsurf(acre_model1.3)
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Figure 4.3: Protected areas model density surfaces produced by ascr (left) and acre (right)
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4.3.3 Density depends on altitude

Estimates when modelling density using altitude alone, once again, produce the same estimates by
both packages.

#Create model where density depends on altitude --------------------------------
ascr_model1.4 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1,

ihd.opts = list(model = ~altitude,
covariates = cov_df_ascr,
scale = FALSE))

#View summary and compare to summary of corresponding acre model ---------------
summary(ascr_model1.4)
summary(acre_model1.4)

#View density surface and compare density surface of corresponding acre model --
par(mfrow=c(1, 2))
show.Dsurf(ascr_model1.4)
show_Dsurf(acre_model1.4)
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Figure 4.4: Altitude model density surfaces produced by ascr (left) and acre (right)
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4.3.4 Density depends on distance to nearest village

The last single covariate used to model density is distance to nearest village. As with the previous
models, estimates produced by ascr match those produced by acre.

#Create model where density depends on distance to nearest village -------------
ascr_model1.5 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1,

ihd.opts = list(model = ~villages,
covariates = cov_df_ascr,
scale = FALSE))

#View summary and compare to summary of corresponding acre model ---------------
summary(ascr_model1.5)
summary(acre_model1.5)

Unfortunately, due to the aforementioned acre bug, only the ascr model’s density surface can be
plotted in this case (Figure 4.5).

#View density surface (cannot compare this to acre, due to bug)-----------------
show.Dsurf(ascr_model1.5)
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Figure 4.5: Distance to nearest village model density surface produced by ascr
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4.4 Full Model

For the purpose of this comparison, a ‘full model’ is considered to use forest coverage, protected area,
and altitude to explain density only, since it is not possible to model other parameters with ascr. Since
the inclusion of distance to nearest village impedes the ability to plot the resulting density surface from
an acre model, the village covariate has been omitted. Comparing the summary output to that of
acre_model1.6.2, which was created in Section 3.7, reveals once again that the estimates are same
as those produced by acre.

#Create model where density depends on forest coverage, protected areas, and
#altitude ----------------------------------------------------------------------
ascr_model1.6 <- fit.ascr(capt = ascr_capt, traps = all_traps1, mask = ascr_mask1,

ihd.opts = list(model = ~forest + protected + altitude,
covariates = cov_df_ascr,
scale = FALSE))

#View summary and compare to summary of corresponding acre model ---------------
summary(ascr_model1.6)
summary(acre_model1.6.2)

#View density surface and compare density surface of corresponding acre model --
par(mfrow=c(1, 2))
show.Dsurf(ascr_model1.6)
show_Dsurf(acre_model1.6.2)

Given that ascr requires covariate information to be known for all mask cells, it is not possible to
directly compare acre’s models that were created with less complete covariate information to any ascr
models.

On the whole, acre is aligned with ascr in all of its estimates; no discrepancies were found. Ultimately,
there exist no concerning differences between the output of acre and ascr based on the explorations
with the simulated data used in this project.
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Figure 4.6: Full model density surfaces produced by ascr (left) and acre (right)
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Chapter 5

Conclusion

5.1 Results

The first discovery of this project was that acre lacked the ability to account for spatial covariates
that change over time. In order to realistically mimic the real world, many of the simulated data
sets contained spatial covariates that changed over time, even when they occurred in the same study
areas. In reality, this may occur when areas are subject to deforestation or new areas are ruled to be
‘protected’. When this situation arose, read.acre() was only able to accept one version of spatial
covariates and ignored any changes that might have occurred. As a result of this finding, the issue was
raised to the package author and promptly resolved.

Next, a bug in the show_Dsurf() function was identified: when an acre model uses a distance covariate
(such as distance to nearest village), show_Dsurf() is unable to produce a plot of its estimated density
surface. This is an important finding, as show_Dsurf() is a key package function. An issue has been
raised on GitHub to address this bug.

fit.acre() performs well, even when covariate information is not known for all mask cells within the
study area. Given that this feature is not available in ascr and that it is common for researchers to
be in this position, validation of this property is very valuable. It was also interesting to find that the
spatial interpolation process used to fill in missing covariate information results in dampened covariate
effects and therefore resulted in more ‘mid range’ density estimates.

Finally, and perhaps most importantly, acre produces accurate model estimates, both with respect to
their true values and with respect to ascr’s estimates.

5.2 Improvements to the simulation

While the results of this project were, on the whole, valuable in the validation of acre, going forward,
the simulation would benefit from some additional features:

• Ability to use detection functions other than the half-normal: The type of detection function
could be chosen randomly by the simulation or decided by the user, in order to produce a wider
variety of resulting data.

• Ability for altitude to be below sea-level: Having altitude that is below sea-level could introduce an
additional type of terrain—water—which could engender its own effects on detection probability
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or measurement error in observed bearings. This may lead to more interesting data, and, as a
result, more findings about acre functions and how they tolerate various scenarios.

• More flexible weather conditions: Currently, the simulation only deals with ‘sun’, ‘overcast’,
‘rain’, and ‘snow’, each of which is made to linearly worsen baseline detection probabilities.
Perhaps a user may wish to simulate a particular scenario which takes place in a specific climate;
in a case like this, it would be beneficial to have the user select their own set of potential weather
conditions and the order in which they might impact detection probabilities.

• Parameter/coefficient checks: Not all combinations of parameters and coefficients work in the
simulation. For example, a coefficient being set too high may result in an infinite number
of animals existing within the study area, or so many animals that it is not computationally
realistic to use the resulting data. Testing the feasibility of the parameters and coefficients given
to simulate_capture_histories_with_sessions() should be done before commencing with
the simulation, so as to not waste a user’s time or computing power.

• Simulated parameters/coefficients: It is not always straightforward which values, or combinations
of values, for parameters and coefficients are practicable for the simulation process. Even with
initial checks, a user may find themselves trying many different values before a simulation runs
successfully. Rather than relying on the simulation’s user to input these values, it would be
helpful if the simulation could simulate them as well, while still allowing for the option of the
user to input their own values if they wish. This would save time and effort, while still allowing
for flexibility if particular scenarios are needed.

• Create an R Shiny user interface: A useful resource for users who are less familiar with R
programming or who perhaps just have less time to spend, would be an R shiny application. A
user could either input their own parameter values or opt to have values chosen for them, and the
application could provide the resulting simulated data in a downloadable form. An additional
feature of this application could include the automatic production of visualisations of various
spatial covariates, and locations of sessions overlaid with their mask cells and detectors. An
application like this could be a valuable resource for people who want to learn how to use the
acre package but who do not have access to data to do so.

• Run a large number of simulations: While focusing on a handful of simulation examples is
valuable for evaluating the usability of acre among various scenarios and identifying bugs, for
a more rigorous test of its accuracy, the simulation should be run hundreds, perhaps thousands,
of times with various parameter values, and the results examined overall. Deviation from true
parameter values can then be analysed bootstrap-style. To do this, however, would require
significant computing resources.

65



References

Agostinelli C. Circular statistics, from “Topics in Circular Statistics” (2001). 2018.
Appel C, Lesmeister D, Duarte A, Davis R, Weldy M, Levi T. Using passive acoustic monitoring to

estimate northern spotted owl landscape use and pair occupancy. Ecosphere 2023;14(2):e4421.
Barlow J, Fregosi S, Thomas L, Harris D, Griffiths E. Acoustic detection range and population density

of Cuvier’s beaked whales estimated from near-surface hydrophones. The Journal of the Acoustical
Society of America 2021;149(1):111–125.

Borchers D, Efford M. Spatially explicit maximum likelihood methods for capture-recapture studies.
Biometrics 2008;64(2):377–385.

Efford M. Density estimation in live-trapping studies. Oikos 2004;106(3):598–610.
Efford M. Package “openCR”. University of Otago; 2022.
Efford M, Jund P, Fletcher D. Package “secr”. University of Otago; 2023.
Genz A, Bretz F. Computation of multivariate normal and t probabilities. Heidelberg, Springer-Verlag;

2009.
Green A, Chynoweth M, Şekercioğlu Ç. Spatially explicit capture-recapture through camera trapping:

A review of benchmark analyses for wildlife density estimation. Frontiers in Ecology and Evolution
2020;8.

Kidney D, Rawson B, Borchers D, Stevenson B, Marques T, Thomas L. An Efficient Acoustic Den-
sity Estimation Method with Human Detectors Applied to Gibbons in Cambodia. PLoS ONE
2016;11(9).

Marques T, Thomas L, Martin S, Mellinger D, Ward J, Moretti D, et al. Estimating animal population
density using passive acoustics. Biological Reviews 2013;88(2):287–309.

McGrath S, Liu J, Stevenson B, Behie A and. Density and population size estimates of the endangered
northern yellow-cheeked crested gibbon nomascus annamensis in selectively logged veun sai-siem
pang national park in cambodia using acoustic spatial capture-recapture methods. PLoS ONE (in
press).

Measey G, Stevenson B, Scott T, Altwegg R, Borchers D. Counting chirps: Acoustic monitoring of
cryptic frogs. Journal of Applied Ecology 2017;54(3):894–902.

Nychka D, Furrer R, Paige J, Sain S. Fields: Tools for spatial data. Boulder, CO, USA, University
Corporation for Atmospheric Research; 2021.

Otis D, Burnham K, White G, Anderson D. Statistical inference from capture data on closed animal
populations. Wildlife Monographs 1978;62:3–135.

Owen-Ramos J, Sanchez C, Blair S, Holm S, Furnas B, Sacks B. Use of fecal DNA to estimate black
bear density in an urban-wildland interface. Wildlife Society Bulletin 2022;46(4):e1347.

Proctor M, McLellan B, Boulanger J, Apps C, Stenhouse G, Paetkau B, et al. Ecological investigations
of grizzly bears in canada using DNA from hair, 1995–2005: A review of methods and progress.
Ursus 2010;21(2):169–188. International Association for Bear Research; Management.

Royle J, Young K. A hierarchical model for spatial capture-recapture data. Ecology 2008;89(8):2281–
2289.

Southwood T, Henderson P. Ecological methods, third edition. Oxford, Blackwell Science Ltd; 2000.
Stevenson B. Package “ascr”. University of Auckland; 2022.

66

https://cran.r-project.org/web/packages/CircStats/CircStats.pdf
https://doi.org/10.1121/10.0002881
https://doi.org/10.1121/10.0002881
https://doi.org/10.1111/j.0030-1299.2004.13043.x
https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/
https://doi.org/10.3389/fevo.2020.563477
https://doi.org/10.3389/fevo.2020.563477
%20https://doi.org/10.1371/journal.pone.0155066
%20https://doi.org/10.1371/journal.pone.0155066
https://doi.org/10.1111/brv.12001
https://doi.org/10.1111/brv.12001
https://github.com/dnychka/fieldsRPackage
http://www.jstor.org/stable/3830650
http://www.jstor.org/stable/3830650
https://doi.org/10.1002/wsb.1347
https://doi.org/10.1002/wsb.1347
https://doi.org/10.2192/1537-6176-21.2.169
https://doi.org/10.2192/1537-6176-21.2.169
https://doi.org/10.1890/07-0601.1
https://github.com/b-steve/ascr


Stevenson B. Package “acre”. University of Auckland; 2023.
Stevenson B, Borchers D, Altwegg R, Swift R, Gillespie D, Measey G. A general framework for animal

density estimation from acoustic detections across a fixed microphone array. Methods in Ecology
and Evolution 2015;6:38–48.

Zwolinski J, Fernandes P, Marques V, Stratoudakis Y. Estimating fish abundance from acoustic sur-
veys: Calculating variance due to acoustic backscatter and length distribution error. Canadian
Journal of Fisheries and Aquatic Sciences 2009;66:2081–2095.

67

https://github.com/b-steve/acre
https://doi.org/10.1139/F09-138
https://doi.org/10.1139/F09-138

	Acknowledgements
	Introduction
	Capture-Recapture
	The need to account for spatial factors

	Spatial Capture-Recapture
	The detection function
	Likelihood function for parameter estimation

	Limitations of SCR
	Acoustic Spatial Capture-Recapture
	Software for Creating SCR and ASCR Models
	Dissertation Overview

	Simulating Acoustic Data with Realistic Spatial Effects
	Considerations
	Distance to the nearest village
	Other spatial covariates
	Spatial correlation in covariate simulation
	Session covariates
	Density calculations based on covariates
	Adjusting g_0 with covariates

	The Functions
	create_villages()
	generate_session_information()
	generate_session_locations()
	create_mask()
	find_bearings()
	format_capture_histories()
	simulate_capture_histories_with_sessions()

	Simulation Examples

	Using Simulated Data with acre
	Null Model
	Model where Density Varies with Forest Coverage
	Model where Density Varies with Protected Area
	Model where Density Varies with Altitude
	Model where Density Varies with Distance to Nearest Village
	Full Model
	Modelling Density Only
	Full Model when Less Covariate Information is Known

	Using Simulated Data with ascr vs. acre
	Preparing to Use ascr
	Null Model
	Models where Density Depends on One Covariate
	Density depends on forest coverage
	Density depends on protected areas
	Density depends on altitude
	Density depends on distance to nearest village

	Full Model

	Conclusion
	Results
	Improvements to the simulation

	References

